Thursday, August 30, 2018

The YouTube Theory of Colour Vision

When writing for a general audience, vision scientists often refer to the long-, middle- and short-wavelength cone classes (L, M and S) as red, green and blue cones respectively. While this simplification may seem harmless it unfortunately has been the starting point for a cascade of misunderstandings about human colour vision. To begin with it reinforces the assumption that hues are properties residing in wavelengths of light, and then understandably leads to the assumption that the three cone types individually detect red, green and blue hues/wavelengths. Together these assumptions lead to the conclusion commonly encountered in discussions of colour vision on social media that we “only really see three colours”. In turn this conclusion has teamed up with the homunculus fallacy to spawn a model of colour vision in which the cone cells send hue signals directly to an observing brain. When the brain receives a combination of cone signals that could be produced by a “real” colour in the spectrum it “thinks it sees” that colour. This model bears little resemblance to current science but has achieved the status of orthodoxy on several online platforms.

Expositions of this model can be found in four YouTube videos recorded as having from nearly half a million to more than 18 million views: “This Is Not Yellow” (Michael Stevens, September 2012 [1]), “How We See Color” (Colm Kelleher, TED-Ed, January 2013 [2]), “Colour Mixing: The Mystery of Magenta” (Steve Mould, The Royal Institution of Great Britain, February 2013 [3]) and “Does This Look White to You?” (Dianna Cowern, October 2015 [4]). Kelleher’s version is typical: “There are three kinds of cone cells that roughly correspond to the colors red, green, and blue. When you see a color, each cone sends its own distinct signal to your brain. For example, suppose that yellow light, that is real yellow light, with a yellow frequency, is shining on your eye. You don't have a cone specifically for detecting yellow, but yellow is kind of close to green and also kind of close to red, so both the red and green cones get activated, and each sends a signal to your brain saying so.”

Based on the assumptions that hues reside in the wavelengths of the spectrum and that the function of colour vision is to detect these hues/wavelengths of monochromatic light, when we “think we see” yellow while looking at a mixture of long and middle wavelengths our brain is being “tricked” or ”lied to”; this mixture of wavelengths is only “fake yellow” [1].


In each video the verbal explanation implies that the “red and green cones” respond most strongly to “red and green wavelengths” respectively, and that there is no cone responding most strongly to “yellow wavelengths”, even when an accompanying diagram shows correctly that the “real yellow” wavelength lies near the peak of the “red cone” response [1,4]. Stevens adds the additional misconception that bright yellow objects such as lemons reflect only “real yellow” wavelengths (they in fact reflect strongly most of the long and middle wavelengths of the spectrum).

Mould [4] adds the novel idea that when the brain receives a combination of “red cone” and “blue cone” signals that could not be produced by a single wavelength it “makes up” a colour, magenta. The view that magenta alone is a “made up colour”, which is now also popular on the internet, reflects the assumption that the spectral hues are not “made up” because they “exist” in the wavelengths of the spectrum.

The YouTube explanations make no explicit reference to cone opponency, the process by which the cone responses are compared with each other beginning in the retina (rather than proceeding directly to the brain). Nor do they mention the important higher-level process of hue opponency [5], by which perceptions of hue are generated in a yet poorly understood way as combinations of red/green and yellow/blue hue components. It is in fact difficult to see how the concept of hue opponency could be grafted without causing great confusion onto an explanation that already invokes red, green and blue signals arising at the level of the cones.

In explaining colour vision science, it is important to make it clear that hues do not reside in wavelengths of light and that at the level of cone responses and cone opponency our vision detects not hues but variations in the balance of the long-, middle- and short-wavelength components of light across the visual field. Hues should not enter the narrative until the higher-level stage of hue opponency, in which detected variations in the spectral composition of light and in the spectral reflectance of objects evoke red/green and yellow/blue hue-opponent perceptions.

1 https://www.youtube.com/watch?v=R3unPcJDbCc
2 https://www.youtube.com/watch?v=l8_fZPHasdo; https://ed.ted.com/lessons/how-we-see-color-colm-kelleher
3 https://www.youtube.com/watch?v=iPPYGJjKVco
4 https://www.youtube.com/watch?v=uNOKWoDtbSk
5 Wuerger, S., & Xiao, K. (2015). Color Vision, Opponent Theory. In R. Luo (Ed.), Encyclopedia of Color Science and Technology (pp. 413-418). Springer. doi:10.1007/978-3-642-27851-8_92-1

David J. C. Briggs (National Art School and Julian Ashton Art School, Sydney, Australia)
Dr. David Briggs has taught courses in colour for painters for twenty years and is the author of the website www.huevaluechroma.com. A recording of his recent ISCC webinar “The New Anatomy of Colour” is available through the ISCC website (https://iscc.org/SeminarSeries).

Friday, April 27, 2018

Psychology and the Big Adventure of the Elastic Yardstick

A psychologist looks to color science to resolve old measurement quandaries.

 A news flash:  psychology is hard if you don’t have the right tools.  Psychology has a significant problem with measurement.  Call its problem what you will: a crossing of ideas, a confluence of concepts, a tired old mistake, or even a methodological thought disorder (the last phrase is from Michell 1997, p. 374). Psychology has had a perennial problem with measurement since the mid-1800s (if not before) when Gustav Fechner announced his law to relate psychological qualities to physical magnitudes.  The heart of the problem is that measurement in psychology is taken to be the same activity as quantitative measurement in physics.  Measurement in physics involves knowing how to measure distances and knowing how to measure time, among other notions; it is clear that we cannot extend the same activities of measurement to psychology without some conceptual upheaval in our understanding of measurement.  "It is as if I were to say, 'You surely know what "It’s 5 o’clock here" means; so you also know what "It’s 5 o’clock on the sun" means.' " (Wittgenstein, 1953/2009, § 350, p.118e)  We do not, at least not without a lot more work and a few conventions about astrophysics.  The one activity (in psychology) is just not the same as the other (in physics).  More than that: it is meaningless to begin to describe how the two activities are the same or different, before we think harder about measurement and psychology.

One can begin in psychology by honoring Fechner and repealing his law, repeating a phrase from Stevens (1957).  We are not rid of the problem of measurement in psychology merely by repealing Fechner’s law, though.  Stevens himself caused as much trouble by introducing another procedure he called ‘magnitude estimation’: a procedure of attaching number words to stimulus magnitudes.  The very act of attaching numbers to perceptible magnitudes was supposed to constitute measurement, somehow.  One can’t just attach numbers to situations and expect the procedure to stand as measurement: such an attitude trivializes psychology in a parody of physics. “The proposition that one conversation is ten times as boring as another is neither true nor false, but is simply a string of words to which no sense may be attached.” (von Kries in Niall, 1995).  Stevens only created trouble by introducing one more procedure unworthy of being called measurement.  So let us honor Stevens and repeal his law of magnitude estimation in turn.
 
Is there hope left for measurement in psychology ?  Measurement continues to be a problem all over psychology today, but hope remains.  We do know what constitutes effective measurement.  The formal or mathematical conditions for quantitative measurement are well-known (as in Krantz, Luce, Suppes, and Tversky, 1971).  Problems of measurement do matter, if a coherent description of color space matters in colorimetry – as one example.   What can be done to resolve issues of the application of measurement in psychology?  We can begin by recognizing that measurement is something that may be possible in psychology, or else it may fail to obtain.  There may be no measurement in most domains of psychology: we just do not know when measurement makes sense. 

Quantitative structure is a contingent matter for colorimetry as it is for psychology generally – not a law at all, not by Fechner and not by Stevens and not by anyone.  I venture to say the quantitative nature of color space has not been demonstrated in full: we still do not know if measurement works within colorimetry in the same way it does for other, physical magnitudes.  In a profoundly ironic twist though, measurement in color space has a far better chance of working than the application of quantitative measurement in a geometry of ‘visual space’.  Color theory has a better legacy: the pioneers of modern color theory were acutely aware of problems of measurement as they advanced the notion of color space, and a ‘line element’ for color space.  In contrast my bet is that ordinary measurement is meaningless for visual shape, that is, under what has been called ‘the geometry of visual space’.  But that conclusion follows from a long and abstract argument which I leave for another day (though see Suppes, 1991, p.48).

References

Krantz, D.H., Luce, R.D., Suppes, P. & Tversky, A. (1971).  Foundations of measurement. vol.1.  Academic Press.  https://doi.org/10.1016/b978-0-12-425403-9.50007-2

Michell, J. (1997).  Quantitative science and the definition of measurement in psychology.  British Journal of Psychology, 88(3), 355 – 383.  https://doi.org/10.1111/j.2044-8295.1997.tb02641.x

Niall, K.K. (1995).  Conventions of measurement in psychophysics: von Kries on the so-called psychophysical law.  Spatial Vision, 9(3), 275 – 305.  https://doi.org/10.1163/156856895x00016

Stevens, S.S. (1957).  On the psychophysical law.  Psychological Review, 64(3), 153 – 181.  https://doi.org/10.1037/h0046162

Suppes, P. (1991).  The principle of invariance with special reference to perception.  In: J.-P. Doignon & J.-C. Falmagne, Eds.  Mathematical psychology: current developments.  New York: Springer, pp. 35 – 53. https://doi.org/10.1007/978-1-4613-9728-1_2

Wittgenstein, L. (1953).  Philosophical investigations / Philosophische Untersuchungen.  Revised 4th edition, 2009.  Wiley-Blackwell.

Keith K. Niall
Keith lives in Toronto, Canada.  He is translator and editor of Erwin Schrödinger’s Color Theory, and he is looking forward to writing a book about vision in his own voice. His email address is Keith.Niall@drdc-rddc.gc.ca.